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ABSTRACT

Background: Patient-derived xenografts (PDXs) are a powerful tool for cancer translational research.
However, it is unclear if early passage PDXs faithfully recapitulate the molecular profiles of the
corresponding patient tumors. The National Cancer Institute (NCI) has developed a Patient-Derived Models
Repository (PDMR; www.pdmr.cancer.gov) of PDXs with clinical annotation and comprehensive genomic
data. We used this data set, which represents 9 major tumor types and other rare histologies, to conduct an
in-depth investigation of the genomic stability of PDXs with early passaging.

Methods: Tumors (biopsy or resection), including some from metastatic sites, were used to establish 218
PDX models from 212 patients. Whole Exome Sequencing and RNA-Seq were performed on 2-9 mice per
model. Passages represented include the original clinical sample, PO, P1, P2, and less frequently > P2.

Results: By several metrics, genomic profiles of most PDMR models were stable at early passages: (1)
transcriptome profiles of mice from different passages in a model were found to cluster together; (2) 75% of
PDXs maintained similar copy number alteration profiles compared with the original clinical sample, with no
significant differences between passages; (3) the allele frequency (AF) of clinically relevant mutations
remained consistent across passages, with only 20% of models having > 15% AF range from the median.
Moreover, genomic features of PDMR models were broadly comparable to those in large public patient data
sets. For example, melanoma models had the highest tumor mutation burden and a 57% prevalence of
BRAF V600X; 11% of colon adenocarcinoma models were MSI-H, with APC (65%), TP53 (67%) and KRAS
(47%) being most frequently altered.

Conclusions: In this large and histologically diverse PDMR data set, PDXs exhibited genomic stability with
early passages. The molecular landscape of PDMR models is faithfully comparable to large public patient
data sets. As the PDMR collection expands additional in-depth analyses will be performed. The PDMR thus
represents a valuable resource for researchers interested in pre-clinical drug or other studies.
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TRANSCRIPTOME PROFILES OF MICE FROM DIFFERENT
PASSAGES WITHIN A PDX MODEL CLUSTER TOGETHER
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+¢ Pairwise Spearman correlation was conducted
on gene expression profiles of PDX samples
using TPM values

+»Samples in several common disease types are
shown

¢ Inset indicates specimens from 8 BLCA models

+¢ Black boxes within the inset indicate
specimens from the same model

¢ PDX samples were ordered by their disease
types
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¢ t-SNE analysis of RNASeq gene expression
data on all PDX samples show that PDX
samples cluster to their own model and
disease type

PDX MODELS MAINTAINED SIMILAR COPY NUMBER VARIANT (CNV)

FREQUENCY OF RECURRENTLY ALTERED GENES IS SIMILAR BETWEEN
MSK-IMPACT AND PDMR COHORTS
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Panel A: Most frequently altered genes in PDMR models.

Panel B: Frequency of recurrently altered genes between PDMR and MSK-IMPACT
cohorts. The MSK-IMPACT cohort is metastatic disease cohort!. The PDMR cohort is a
mixed population of donors with primary and metastatic disease.
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Results
s ~75% of PDX models maintain similar
CNV profiles between PDX samples and
originator (Pearson correlation R > 0.6)
* No significant difference was observed

among passages 1, 2 and 3+
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PAAD (n = 8)
BLCA Bladder Urothelial Carcinoma
SARCNOS (n = 6) MEL Melanoma
LUSC Lung Squamous Cell Carcinoma
HNSC Head and Neck Squamous Cell Carcinoma
LUAD Lung Adenocarcinoma
Other (n = 81) 0CscC Oral Cavity Squamous Cell Carcinoma

PAAD Pancreatic Adenocarcinoma

SARCNOS | Sarcoma, not otherwise specified

Clinical and pathological datasets: Genomic datasets:

¢ Clinical annotation of donors Whole Exome:
+¢ Limited clinical history including ¢ Raw FASTQ files
previous treatment regimens ¢ VCF files (from our GATK pipeline)
+»* Donor demographics including self- ¢ Both somatic and mixed
declared ethnicity, smoking history ¢ Variant calls from a selected set of 61
s STR profile cancer-related genes
¢ Histo-pathological annotations and ¢ Ethnicity determination from WES

images of individual PDX specimens data using SNPweights

Whole transcriptome (RNASeq):

¢ Raw FASTQ files

Gene expression data (RSEM pipeline)
Transcript expression data (RSEM
pipeline)
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ALLELE FREQUENCIES OF CLINICALLY RELEVANT MUTATIONS
REMAIN CONSISTENT ACROSS PASSAGES IN PDMR MODELS

20% deviation from median VAF 10% deviation from median VAF

Gene # Patients # Outlier models # outlier models
AKT 1 0 0
ALK 2 0 1
ATM 3 0 0
BRAF 15 1 4
CTNNB1 3 0 0
EGFR 3 0 0
ERBB2 3 0 0
FGFR3 4 1 1
HRAS 1 0 0
IDH1 4 1 2
KRAS 43 3 9
MAP2K1 2 0 0
MTOR 2 0 1
NRAS 8 2 2
PIK3CA 20 4 6
PTEN 1 0 0
TP53 15 0 1

Summary 132 9% 20%

This analysis was performed on models which had above mentioned clinically
relevant mutations.

CORRELATION OF MUTATIONAL SIGNATURES AND
SOMATIC MUTATION BURDEN ACROSS PDMR MODELS
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Panel A: Density plot of somatic mutational burden across PDMR models

Panel B: Dominant mutational signatures present in different histologies across PDMR
models

Panel C: Distribution of somatic mutational burden, mutational signatures, MSI status,
%LOH across PDMR models

Note: Data from 88 PDX models with germline DNA available was used in these panels
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PDXs

The genomic landscape of PDMR models is comparable to large public patient data sets
Frequency of actionable variants in PDMR models is similar to other large public patient data

sets

Additional datasets generated from the PDMR models (e.g., mutational signatures, somatic

exhibited genomic stability during early passages

tumor mutational burden, MSI status etc.) may be used to identify underlying biological
processes and can be used for prioritizing preclinical study agents

We have described therapeutically actionable biomarkers present in the genomically
characterized PDX models

This data suggest some models may be valuable for preclinical drug combination studies
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