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ABSTRACT
Background: Patient-derived xenografts (PDXs) are a powerful tool for cancer translational research. 
However, it is unclear if early passage PDXs faithfully recapitulate the molecular profiles of the 
corresponding patient tumors. The National Cancer Institute (NCI) has developed a Patient-Derived Models 
Repository (PDMR; www.pdmr.cancer.gov) of PDXs with clinical annotation and comprehensive genomic 
data. We used this data set, which represents 9 major tumor types and other rare histologies, to conduct an 
in-depth investigation of the genomic stability of PDXs with early passaging.

Methods: Tumors (biopsy or resection), including some from metastatic sites, were used to establish 218 
PDX models from 212 patients. Whole Exome Sequencing and RNA-Seq were performed on 2-9 mice per 
model. Passages represented include the original clinical sample, P0, P1, P2, and less frequently > P2.

Results: By several metrics, genomic profiles of most PDMR models were stable at early passages: (1) 
transcriptome profiles of mice from different passages in a model were found to cluster together; (2) 75% of 
PDXs maintained similar copy number alteration profiles compared with the original clinical sample, with no 
significant differences between passages; (3) the allele frequency (AF) of clinically relevant mutations 
remained consistent across passages, with only 20% of models having > 15% AF range from the median. 
Moreover, genomic features of PDMR models were broadly comparable to those in large public patient data 
sets. For example, melanoma models had the highest tumor mutation burden and a 57% prevalence of 
BRAF V600X; 11% of colon adenocarcinoma models were MSI-H, with APC (65%), TP53 (67%) and KRAS 
(47%) being most frequently altered.

Conclusions: In this large and histologically diverse PDMR data set, PDXs exhibited genomic stability with 
early passages. The molecular landscape of PDMR models is faithfully comparable to large public patient 
data sets. As the PDMR collection expands additional in-depth analyses will be performed. The PDMR thus 
represents a valuable resource for researchers interested in pre-clinical drug or other studies.

vPairwise Spearman correlation was conducted 
on gene expression profiles of PDX samples 
using TPM values

vSamples in several common disease types are 
shown

v Inset indicates specimens from 8 BLCA models
vBlack boxes within the inset indicate 

specimens from the same model
vPDX samples were ordered by their disease 

types
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TRANSCRIPTOME PROFILES OF MICE FROM DIFFERENT 
PASSAGES WITHIN A PDX MODEL CLUSTER TOGETHER

RESULTS

vt-SNE analysis of RNASeq gene expression 
data on all PDX samples show that PDX 
samples cluster to their own model and 
disease type

COAD (n = 36)

BLCA (n = 19)MEL (n = 14)

LUSC (n = 13)

HNSC (n = 13)

LUAD (n = 12)

OCSC (n = 10)

PAAD (n = 8)

SARCNOS (n = 6)

Other (n = 81)

Overview of the 
PDMR cohort 

(n = 212)

NCI PATIENT-DERIVED MODELS REPOSITORY DATASETS

Genomic datasets:

Whole Exome: 
v Raw FASTQ files
v VCF files (from our GATK pipeline)

v Both somatic and mixed
v Variant calls from a selected set of 61 

cancer-related genes
v Ethnicity determination from WES 

data using SNPweights

Whole transcriptome (RNASeq): 
v Raw FASTQ files
v Gene expression data (RSEM pipeline)
v Transcript expression data (RSEM 

pipeline)

v Clinical annotation of donors
v Limited clinical history including 

previous treatment regimens
v Donor demographics including self-

declared ethnicity, smoking history
v STR profile
v Histo-pathological annotations and 

images of individual PDX specimens

Clinical and pathological datasets:

PDX MODELS MAINTAINED SIMILAR COPY NUMBER VARIANT (CNV) 
PROFILES WITH NO SIGNIFICANT DIFFERENCES BETWEEN PASSAGES

Approach
v Pearson correlation of CNA profiles was 

calculated between PDX samples and 
originator

Advantages
v No cutoff required
v Not sensitive to tumor cellularity.

Results
v ~75% of PDX models maintain similar 

CNV profiles between PDX samples and 
originator (Pearson correlation R > 0.6)

v No significant difference was observed 
among passages 1, 2 and 3+

20% deviation from median VAF 10% deviation from median VAF 
Gene # Patients # Outlier models # outlier models
AKT 1 0 0
ALK 2 0 1
ATM 3 0 0
BRAF 15 1 4

CTNNB1 3 0 0
EGFR 3 0 0

ERBB2 3 0 0
FGFR3 4 1 1
HRAS 1 0 0
IDH1 4 1 2
KRAS 43 3 9

MAP2K1 2 0 0
MTOR 2 0 1
NRAS 8 2 2

PIK3CA 20 4 6
PTEN 1 0 0
TP53 15 0 1

Summary 132 9% 20%

ALLELE FREQUENCIES OF CLINICALLY RELEVANT MUTATIONS 
REMAIN CONSISTENT ACROSS PASSAGES IN PDMR MODELS
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FREQUENCY OF RECURRENTLY ALTERED GENES IS SIMILAR BETWEEN 
MSK-IMPACT AND PDMR COHORTS
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Panel A: Most frequently altered genes in PDMR models.
Panel B: Frequency of recurrently altered genes between PDMR and MSK-IMPACT 
cohorts.  The MSK-IMPACT cohort is metastatic disease cohort1. The PDMR cohort is a 
mixed population of donors with primary and metastatic disease.

www.pdmr.cancer.gov

CORRELATION OF MUTATIONAL SIGNATURES AND 
SOMATIC MUTATION BURDEN ACROSS PDMR MODELS

CCRCC (3)
LUAD (3)
LXSC (3)
PAAD (4)
HNSC (7)
LUSC (7)

MEL (8)
BLCA (9)
OCSC (9)

COAD (11)
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dominant Signature
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A

Panel A: Density plot of somatic mutational burden across PDMR models
Panel B:  Dominant mutational signatures present in different histologies across PDMR 
models
Panel C: Distribution of somatic mutational burden, mutational signatures, MSI status, 
%LOH across PDMR models
Note: Data from 88 PDX models with germline DNA available was used in these panels

* This patient was treated with temozolomide
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CLINICALLY ACTIONABLE MUTATIONS PRESENT ACROSS PDMR MODELSA R T I C L E S
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checkpoint inhibitors. To determine whether mutation signatures 
could be inferred from targeted capture data, we first calculated 
the distribution of mutation rates for each cancer type (Fig. 5a). 
Comparisons to matched WES data from 106 tumors in this cohort 
revealed a high correlation (R2 = 0.76; Supplementary Fig. 14), con-
firming that MSK-IMPACT results were representative of genome-wide 
processes and thus potentially capable of revealing signatures associ-
ated with biological processes that produce high mutation rates.

Using the pattern and nucleotide context of all observed silent and 
nonsilent substitutions in the 994 cases (9%) with elevated mutation rates 
(>13.8 mutations/megabse (Mb); Fig. 5b), we assigned the mutations in 
each sample to constituent mutation signatures from the set of 30 signa-
tures described previously37. Using this approach, we identified tumors 
with intrinsic defects in DNA repair (for example, DNA polymerase  
(POLE)-associated hypermutation or mismatch-repair (MMR) defi-
ciency), exposure to exogenous mutagens (for example, UV radiation 
or cigarette smoke) and exposure to prior therapy (for example, temo-
zolomide) in representative tumor types (Fig. 5c and Supplementary 
Table 7). As expected, the signatures associated with UV radiation, temo-
zolomide and cigarette smoke predominated in melanoma, glioma and 
lung cancer (Fig. 5d). The signatures associated with POLE and MMR 
predominated in colorectal cancer and endometrial cancer, respectively, 
and were associated with underlying loss-of-function somatic mutations. 
Furthermore, the samples with MMR signatures also had an overall 
increased indel-to-substitution ratio as compared to tumors with POLE 
or other signatures (median 0.46 versus 0.06, P < 0.001), and 89% of 
samples had evidence of microsatellite instability (MSI), according to 
an orthogonal bioinformatics approach, MSIsensor38.

Altogether, we identified 102 individuals across 11 tumor types 
harboring both a dominant MMR signature and MSI classification 

by MSIsensor (Fig. 5e), 45% of whom were not previously tested for 
MMR deficiency. Notably, this analysis may underestimate the preva-
lence of the MSI phenotype in our cohort, as it is restricted to the 
patients with the highest mutation burden. As MSI status is increas-
ingly being used as a biomarker for response to immune checkpoint 
inhibitors and an enrollment criterion for immuno-oncology ‘basket’ 
clinical trials39, our results suggest that comprehensive genomic pro-
filing may substantially expand the number of patients who could 
potentially benefit from immunotherapy. Among the patients with 
tumors showing MSI in our cohort, responses to immunotherapy 
(i.e., radiographic-stable disease or tumor regression) were observed 
in colorectal, endometrial, gastric, prostate and bladder cancers. In 
the case of a 55-year-old patient with prostate cancer, a cancer in 
which conventional MSI testing is rarely performed, MSK-IMPACT 
revealed an unanticipated MMR signature without a clear underlying 
causal somatic or germline lesion. As a result, the patient was enrolled 
on a clinical trial of an anti-PD-L1 immunotherapy regimen and has 
exhibited a marked response to treatment (Fig. 5f).

Clinical actionability and utility
Encouraged by such anecdotes, we attempted to broadly and system-
atically evaluate the clinical utility of prospective molecular profiling 
to guide treatment decisions. We used OncoKB, a curated knowledge 
base of the oncogenic effects and treatment implications of somatic 
mutations, to group all mutations into tiers of clinical actionability 
(http://oncokb.org/)40. Mutations were classified in a tumor type– 
specific manner, according to the level of evidence that the mutation is 
a predictive biomarker of drug response. Altogether, 36.7% of patients  
(n = 3,792 patients) harbored at least one actionable alteration (Fig. 6a).  
The tumor types with the highest proportion of actionable mutations 
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Figure 6 Clinical actionability of somatic alterations revealed by MSK-IMPACT. (a) Alterations were annotated based on their clinical actionability 
according to OncoKB, and samples were assigned to the level of the most actionable alteration. Briefly, levels of evidence varied according to whether 
mutations are FDA-recognized biomarkers (level 1), predict response to standard-of-care therapies (level 2) or predict response to investigational agents 
in clinical trials (level 3). Levels 2 and 3 were subdivided according to whether the evidence existed for the pertinent tumor type (2A, 3A) or a different 
tumor type (2B, 3B). The distribution of the highest level of actionability across all patients is displayed. (b) Distribution of levels of actionability  
across tumor types. GNET, gastrointestinal neuroendocrine tumor. Colors are defined as in a. (c) Number of patients enrolled on genomically matched 
clinical trials on the basis of different gene alterations.
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SUMMARY

v PDXs exhibited genomic stability during early passages
v The genomic landscape of PDMR models is comparable to large public patient data sets
v Frequency of actionable variants in PDMR models is similar to other large public patient data 

sets
v Additional datasets generated from the PDMR models (e.g., mutational signatures, somatic 

tumor mutational burden, MSI status etc.) may be used to identify underlying biological 
processes and can be used for prioritizing preclinical study agents

v We have described therapeutically actionable biomarkers present in the genomically
characterized PDX models

v This data suggest some models may be valuable for preclinical drug combination studies
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