The National Cancer Institute’s Patient-Derived Models Repository (PDMR)

Yvonne A. Evrard, Ph.D.
Frederick National Laboratory for Cancer Research
Leidos Biomedical Research, Inc. In Support of the Division of Cancer Treatment and Diagnosis, NCI
April 15, 2018

https://pdmr.cancer.gov
I have the following financial relationships to disclose:

Employee of: Leidos Biomedical Research, Inc.

I will not discuss off label use and/or investigational use in my presentation.

This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
NCI’s Patient-Derived Models Repository (PDMR)

https://pdmr.cancer.gov

- Distribute Early-Passage, Clinically-Annotated, and Molecularly-Characterized Patient-Derived Models at a minimal cost to researchers.
- Provide all related metadata and SOPs through a public website.
NCI Patient-Derived Models Repository (PDMR)

- A national repository of Patient-Derived Models (PDMs) to serve as a resource for academic discovery efforts and public-private partnerships for drug discovery comprised of:
 - Clinically-annotated, Early-passage, Molecularly-characterized Patient-Derived Xenografts (PDXs)
 - Complement existing PDX collections and focus on under-represented model types such as rare cancers and models representing racial and ethnic minorities
 - Patient-derived tumor cell (PDCs) and cancer-associated fibroblast (CAF) cultures developed from tumor material and/or PDXs
 - Patient-derived organoid (PDOrg) models developed from tumor material and/or PDXs

- Goal is to provide long-term home for >1000 PDX models along with matched in vitro and organoid models wherever possible
 - Comprehensive characterization of early-passage models: patient medical information including treatment history and response, WES, RNAseq, histology, growth curves, and preclinical drug responses
 - All models and associated data made available through a publicly available website: https://pdmr.cancer.gov
PDMR Development and QC Process

QC General
- Pathology assessed to compare to patient diagnosis and to monitor for EBV-driven human lymphomas, mouse tumors, mouse lymphomas, GvHD...
 - Necropsy of any suspect GvHD, human lymphoma, or metastatic models with indication of disseminated disease
- Confirmation of ability to regrow from Cryopreservation
- Human:Murine DNA Ratio
- Human pathogen testing (hIMPACT panel, IDEXX)
- Rodent pathogen assessment

Distribution Material
- Confirmed for every PDX
 - Pathology
 - STR
- Provided for 4-6 representative PDXs
 - H&E images with %tumor, %necrosis, and %stroma
 - WES and RNASeq

Lineage Information Maintained:
- Fragment Passaging
- Attempt to Capture Tumor Heterogeneity

Drug Testing Queue
- Uses material from various passages

Passage 0 (P0)
- NSG host, Subcutaneous implant except
 - Breast Ca: MFP
 - Sarcomas: MFP or Thigh Muscle
 - Prostate: Intra-prostatic

P1

P2

P3, P4...
Passaging stopped once sufficient Distribution and QC Material Obtained
NCI Patient-Derived Models Repository (PDMR)

- Currently have **154 PDX models available** for request (cryo-material) through the public website (pdmr.cancer.gov).
 - Model information also available through PDX Finder at www.pdxfinder.org
- Every model has:
 - Patient medical history including treatment history and response
 - Representative PDX histology images
 - STR Profile
 - Human Pathogen Status
 - WES (FASTQ, vcf) and RNASeq (FASTQ, TPM) from 4-6 representative PDXs
 - Genetic ancestry assessment
- All data are publicly accessible and available for download for metadata analysis and model selection
- Specimens are from patients with both primary and metastatic disease from treatment naïve to heavily pre-treated.
Recently Released & Upcoming Models

New Model Includes Rare Cancers

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Currently Available</th>
<th>3-6mo Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLC</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Merkel Cell Ca</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Small cell ca (extrapulmonary)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Carcinosarcoma of the uterus</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hurthle cell neoplasm (thyroid)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GIST</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pharyngeal SCC</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Ovarian Epithelial Ca</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cervical/Vaginal Ca</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Vulvar Ca</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MPNST</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Nasopharyngeal SCC</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Salivary Gland Ca</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Available MSI-High Models

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>PDMR Model#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma - cervix</td>
<td>235635-245-T</td>
</tr>
<tr>
<td>Adenocarcinoma - colon</td>
<td>625472-104-R</td>
</tr>
<tr>
<td>Adenocarcinoma - colon</td>
<td>817829-284-R</td>
</tr>
<tr>
<td>Adenocarcinoma - colon</td>
<td>997537-175-T</td>
</tr>
<tr>
<td>Adenocarcinoma - pancreas</td>
<td>292921-168-R</td>
</tr>
<tr>
<td>Carcinosarcoma of the uterus</td>
<td>327498-153-R</td>
</tr>
<tr>
<td>Endometrioid endomet. Adeno</td>
<td>381249-077-R</td>
</tr>
<tr>
<td>Small cell lung cancer</td>
<td>541946-237-B</td>
</tr>
<tr>
<td>Urothelial/bladder cancer, NOS</td>
<td>558786-286-R</td>
</tr>
<tr>
<td>Vaginal cancer, NOS</td>
<td>283339-068-R</td>
</tr>
</tbody>
</table>
Tumor Heterogeneity by Histomorphology in One Model

Laryngeal SCC Patient. Resection of the larynx. Tissue implanted into 5 P0 host NSG mice.

Model In development

P0: Poorly differentiated squamous cell carcinoma with marked pleomorphism including neuroendocrine features.

P0: Well differentiated squamous cell carcinoma with area of keratin pearl formation.

P0: Well to moderately differentiated non-keratinizing squamous cell carcinoma.
Hierarchical Clustering of PDX Models Across Passages

> Pairwise Spearman Correlation

Individual PDXs Cluster by Model and Disease Type

> t-SNE Analysis of RNASeq

Sampling includes RNASeq profiles from Patient material (Originator) and representative PDXs from Passage 0-3
June/July 2018

Finalizing database logic and website content for public release
Will be announced on DCTD website and @NCItreatment Twitter account

- Expect 50-70 PDC [Median passage 20] and >100 CAF [Median passage 15] at launch
- At least 1/3 currently matched to a Public PDX (more in development)
- 6 Matched PDC/CAF cultures (more in development)

- SOPs to be provided on Public website
- All PDCs tested for growth as a xenograft
- All PDCs will have WES and RNASeq available
- CAFs are not transformed. They will have limited number of passages before senescence.
PDMR In Development

- **Germline Sequence for sub-set of models**
- Consensus Genomic Variants: List of variants that are 100% represented in WES data
- Designation of Metastatic PDX Models (spontaneous, post-debulking)
- Whole Mouse Imaging (e.g., MRI, US, CT) via TCIA
- Preclinical Drug Study Results
- Models Developed from Rapid Autopsy Procedures:
 - Current focus is on Pancreatic and Prostate Cancer
 - PDX Models from Primary and Metastatic Locations in the Same Patient

1°: Pancreas Met: Liver Met: Colonic Fat Met: Myometrium Met: Colon
NCI Patient-Derived Models Repository (PDMR) Posters

April 16: 8AM – 12PM
Session PO.TB01.01 - Advances in the Generation and Analysis of Patient-Derived Xenografts

1038 / 11: Xenograft-associated B cell lymphoproliferative disease as a surrogate model to study Epstein-Barr virus (EBV) driven lymphoma of the elderly
 Tomas Vilimas et al.

1039 / 12: PDX models generated from a patient with metastatic colon adenocarcinoma display both spatial and temporal tumor heterogeneity
 Biswajit Das et al.
Acknowledgements

Technical/Scientific Oversight
James H. Doroshow
Melinda G. Hollingshead
Michelle M. Gottholm

Clinical Interface and QA/QC
Michelle A. C. Eugeni
Sergio Y. Alcoser
Linda L. Blumenauer
Alice Chen
Donna W. Coakley
Nicole E. Craig
Nancy Moore
Melanie Simpson
Jessica Smith
Annette Stephens
Mary Jane Troncatti
Jenny Yingling

In vivo & In vitro Teams
Dianne Newton
Kaitlyn Arthur
Mariah Baldwin
Carrie Bonomi
Suzanne Borgel
Devynn Breen
John Carter
Tiffani Chase
Margaret R. DeFreytas
Jordyn Davidson
Emily Delaney
Raymond Divelbiss
Kelly Dougherty
Kyle Georgiuses
Marion Gibson
Tara Grinnage-Polley
Kelly Hedger
Sierra Hoffman
Candace Mallow
Chelsea McGlynn
Malorie Morris
Jenna E. Moyer
Michael Mullendore
Kevin Plater
Marianne Radzyminski
Nicki Scott
Luke H. Stockwin
Howard Stotler
Jesse Stottlemeyer
Savanna Styers
Debbie Trail
Anna Wade
Abigail Walke
Jorden Welker

Molecular Characterization Laboratory (MoCha)
P. Mickey Williams
Chris Karlovich
Corinne Camalier
Erin Cantu
Lily Chen
Biswajit Das
Vivekananda Datta
Palmer Fliss
Thomas Forbes
Wiem Lassoud
Jason Lih (Pharmacyclics)
Sean McDermott
Rajesh Patidar
Tomas Vilimas
Bill Walsh

Whole Mouse Imaging
Paula Jacobs
James Tatum
Joseph Kalen
Lilia Ileva
Nimit Patel
Lisa Riffle

Statistics
Larry Rubinstein
Eric Polley (Mayo)
Mariam Konate

The NCI expresses its deepest thanks to the patients, families, and clinical teams that make this effort possible.
NCI Patient-Derived Models Repository: Multiple Avenues for Discovery

Develop PDX Models and PDC (Tumor & Fibroblast) Lines
DNA, RNA, Protein, WES, RNASEq, Targeted Sequencing

Tumor/Patient Heterogeneity

3D Culture, 3D Pharmacodynamics

2D and Organoid Cultures

Preclinical Trial Modeling

Live Tumor Imaging

Increasing Drug Concentration
Genetic Ancestry Assessment for 255 PDX Models with WES

Self-Reported Race/Ethnicity
- 55.6% Not Provided
- 42.2% White
- 0.9% Black or African American
- 0.9% Multi-Racial (>1 Selection)
- 0.4% American Indian/Alaska Native
- 0.4% Native Hawaiian or Other Pacific Islander
- 3 HA

Inferred Genetic Ancestry (≥80%)
- 88.9% East Asian (EA)
- 4.9% European (CEU)
- 3.6% Native American (NA)
- 2.7% West African (YRI)
- Mixed (All < 80%)

SNPweights Reference Panels (Chen et al., Bioinformatics, 2013)