APPLICATIONS OF IMMUNOHISTOCHEMISTRY IN CHARACTERIZATION OF PATIENT DERIVED XENOGRAFT MODELS

Lindsay Dutko¹, Gloryvee Rivera¹, Erin Cantu¹, Vishnuprabha Rahulkannan¹, Kelly Benauer¹, Tiffanie Chase², Emily Delaney², Jesse Stottlemyer², Chelsea McGlynn², Howard Stotler², John Carter², Suzanne Borgel², Michelle M. Gottholm Ahalt³, Michelle Eugeni³, Melinda Hollingshead³, Yvonne Evrard², Chris Karlovich¹, Biswajit Das¹, Mickey Williams¹, James H. Doroshow⁴, Shahanawaz Jiwani¹ ¹Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, ³Biological Testing Branch, Developmental Therapeutics Program, National Cancer Institute at Frederick, MD and ⁴National Cancer Institute, Division of Cancer Treatment and Diagnosis, Bethesda, MD

INTRODUCTION

Well characterized patient derived xenograft models (PDX) are becoming the preferred preclinical tool in every aspect of translational cancer research, including biologic understanding of the disease, development of new treatments and identifying potential therapy predictive and resistance biomarkers. Establishing a repository of well characterized PDX models of different cancer types is a critical first step in using this platform for pre-clinical research. Characterization of PDX models using a multi-omic approach is most desirable, although such efforts can be very expensive and technically demanding. The continuous discoveries of tissuespecific biomarkers has made immunohistochemistry (IHC) an indispensable ancillary tool. Utilizing IHC can also be crucial during propagation of PDX models as certain aberrations in biological characteristics may affect the validity and reliability of the model for downstream research analysis. Here we present a panel of essential antibodies and the testing strategy employed in our lab for histopathologic assessment of PDX models and their subsequent passages. We also present certain commonly encountered challenges during PDX development to depict the utility of this IHC panel, including accurate histomorphologic classification of tumors, identifying subclonal outgrowth and tumor evolution, identifying murine tumor, identifying malignant transformation of lymphoid/stromal elements, and evaluation for the presence/absence of therapeutic or prognostic biomarkers.

ANTIBODY	CLONE	VENDOR	DILUTION	ANTIBODY	CLONE	VENDOR	DILL
Androgen Receptor (AR)	[EPR1535(2)]	abcam	1:500	FOXP3	(5H10L18)	Invitrogen	1:20
B-Catenin (FFPE and FF)	[E247]	abcam	1:500	GATA3	[EPR16651]	abcam	1:10
CD19	polyclonal	abcam	1:200	GCDFP-15	[EPR1582Y]	abcam	1:25
CD3	polyclonal	abcam	1:200	GFAP	polyclonal	DAKO/Agilent	1:40
CD20	[SP32]	abcam	1:100	Ki-67	[D2H10]	Cell Signaling	1:10
CD34	[EP373Y]	abcam	1:2500	Ku80	[EPR3468]	abcam	1:25
CD45	polyclonal	abcam	1:1000	MelanA	[EPR20380]	abcam	1:50
CD56 (NCAM1)	[EPR2566]	abcam	1:100	MGMT	MT3.1	Millipore	1:20
				Mitochondria			
CD68	[EPR20545]	abcam	1:4000	Marker (Biotin)	MTC02	abcam	1:25
CDX2	[EPR2764Y]	abcam	1:750	Myogenin	[EPR4789]	abcam	1:50
Chromogranin A	[SP12]	abcam	1:100	NAPSIN A	[EPR6252]	abcam	1:30
СК7	[EPR1619Y]	abcam	1:750	p63	polyclonal	GeneTex	1:10
СК19	[EPR1580Y]	abcam	1:3000	PD-1	[EPR4877(2)]	abcam	1:50
						LifeSpan	
СК20	[EPR1622Y]	abcam	1:200	PD-L1 (CD274)	RBT-PDL1	Biosciences	1:25
Cytokeratin wide				Progesterone			
spectrum (CK)	polyclonal	abcam	1:200	Receptor (PR)	[SP2]	abcam	1:10
				Prostate Specific			
Desmin	[Y66]	abcam	1:100	Antigen (PSA)	[EP1588Y]	abcam	1:20
EBV LMP1	[D24-G]	abcam	1:500	S100	[EPR19013]	abcam	1:10
				Smooth Muscle			
ErbB2 (Her2)	[SP3]	abcam	1:100	Actin (SMA)	polyclonal	abcam	1:10
ERG	[EPR3864]	abcam	1:750	Synaptophysin	[SP11]	abcam	1:50
Estrogen Receptor (ER)	[SP1]	abcam	1:100	TTF1	[SP141]	abcam	1:50
		LifeSpan					
FOXP1	monoclonal	Biosciences	1:50	Vimentin	[EPR3776]	abcam	1:20

IMMUNOHISTOCHEMISTRY PANEL FOR CHARACTERIZATION OF PDX

◆ 43 IHC assays were validated on the Leica Bond RX automated staining platform to identify common inconsistencies in PDX development including markers for classifying carcinomas, lymphomas, sarcomas, murine tumors, and theragnostic biomarkers. Rabbit antibodies are used rather than mouse antibodies to prevent non-specific staining of murine tissue.

The staining protocol used is the standard Leica Bond *IHC Protocol F without the Post Primary step and with a 30-minute primary antibody incubation.

Other staining conditions, such as epitope/antigen retrieval, are assay specific.

IHC Analysis	#Models
ER+, PR-, Her2 (negative or equivocal)	2
ER+, PR+, Her2 (negative or equivocal) 1st example above	2
ER-, PR+, Her2 (negative or equivocal)	1
ER-, PR-, Her2 (negative or equivocal)	16
ER-, PR-, Her2 (3+) 2nd example above	1

TIONAL CANCER INSTITUTE PATIENT-DERIVED MODELS REPOSITO

Frederick National Laboratory

sponsored by the National Cancer Institute

This project has been funded in whole or in part with federal funds from the National Cancer Institute National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention